
“bti1051” — 2005/6/10 — page 9 — #1

BIOINFORMATICS Vol. 21 Suppl. 1 2005, pages i9–i18
doi:10.1093/bioinformatics/bti1051

Conservative extraction of over-represented
extensible motifs

Alberto Apostolico1,2,∗, Matteo Comin2 and Laxmi Parida3

1Department of Computer Sciences, Purdue University, Computer Sciences Building,
West Lafayette, IN 47907, USA, 2Dipartimento di Ingegneria dell’Informazione,
Università di Padova, Padova, Italy and 3IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598, USA

Received on January 15, 2005; accepted on March 27, 2005

ABSTRACT
Motivation: The discovery of motifs in biosequences is fre-
quently torn between the rigidity of the model on the one hand
and the abundance of candidates on the other. In particular,
the variety of motifs described by strings that include ‘don’t
care’ (dot) patterns escalates exponentially with the length
of the motif, and this gets only worse if a dot is allowed to
stretch up to some prescribed maximum length. This circum-
stance tends to generate daunting computational burdens,
and often gives rise to tables that are impossible to visualize
and digest. This is unfortunate, as it seems to preclude pre-
cisely those massive analyses that have become conceivable
with the increasing availability of massive genomic and protein
data. Although a part of the problem is endemic, another part of
it seems rooted in the various characterizations offered for the
notion of a motif, that are typically based either on syntax or on
statistics alone. It seems worthwhile to consider alternatives
that result from a prudent combination of these two aspects in
the model.
Results: We introduce and study a notion of extensible motif in
a sequence which tightly combines the structure of the motif
pattern, as described by its syntactic specification, with the
statistical measure of its occurrence count. We show that a
combination of appropriate saturation conditions (expressed in
terms of minimum number of dots compatible with a given list of
occurrences) and the monotonicity of probabilistic scores over
regions of constant frequency afford us significant parsimony
in the generation and testing of candidate over-represented
motifs.

The merits of the method are documented by the res-
ults obtained in implementation, which specifically targeted
protein sequence families. In all cases tested, the motif
reported in PROSITE as the most important in terms of
functional/structural relevance emerges among the top 30
extensible motifs returned by our algorithm, often right at the
top. Of equal importance seems the fact that the sets of all
surprising motifs returned in each experiment are extracted

∗To whom correspondence should be addressed.

faster and come in much more manageable sizes than would
be obtained in the absence of saturation constrains.
Availability: This software will be available for use with the
suite of tools at www.research.ibm.com/bioinformatics
Contact: axa@dei.unipd.it

1 INTRODUCTION
1.1 Preliminaries1

The discovery of motifs in biosequences is attracting increas-
ing interest due to the perceived multiple implication of motifs
in biological structure and function. The approaches to motif
discovery may be partitioned in two main classes. In the first
class, the sample string is tested for occurrences of motifs in
a family of a priori defined abstract models or templates. The
second class of approaches assumes that the search may be
limited to substrings in the sample or to some more or less
controlled neighborhood of these substrings. The approaches
in the first class are more rigorously justifiable, but often pose
daunting computational burdens. Those in the second class
tend to be computationally viable but rest on more shaky
methodological grounds.

The characterizations offered for the notion of a motif could
be partitioned roughly into statistical and syntactic. In a typical
statistical characterization, a motif is a sequence of m posi-
tions such that at each position each character from (some
subset of) the alphabet may occur with a given probability or
weight. This is often described by a suitable matrix or profile,
where columns correspond to positions and rows to alphabet
characters (Hertz and Stormo, 1999; Lawrence et al., 1993).
The lineage of syntactic characterizations could be ascribed
to the theory of error correcting codes: a motif is a pattern w

of length m and an occurrence of it is any string at a distance
of d, the distance being measured in terms of errors of a cer-
tain type. For example, we can have only substitutions in the
Hamming variant, substitutions and indels in the Levensthein
variant, and so on (Keich and Pevzner, 2002; Pevzner and

1The expert reader may skip this part.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org i9

“bti1051” — 2005/6/10 — page 10 — #2

A.Apostolico et al.

Sze, 2000). Syntactic characterizations enable us to describe
the model of a motif, a realization of it or both, as a string
or simple regular expression over an extension of the input
alphabet �, e.g. over � ∪ {.}, where ‘.’ denotes the ‘don’t
care’ (dot) character.

Irrespective of the particular model or representation
chosen, the tenet of motif discovery equates over-
representation of a motif with surprise and hence with interest.
Thus, any motif discovery algorithm must ultimately weigh
motifs against some threshold, based on a score that com-
pares empirical and expected frequency, perhaps with some
normalization. The departure of a pattern w from expectation
is commonly measured by the so-called z-scores (Leung et al.,
1996), which have the form

z(w) = f (w) − E(w)

N(w)
,

where f (w) > 0 represents a frequency, E(w) > 0 an expecta-
tion and N(w) > 0 is the expected value of some function of w.
For a given z-score function, a set of patterns W and real posit-
ive threshold T , patterns such as z(w) > T or z(w) < −T are
dubbed over-represented or under-represented, or simply sur-
prising. The problem is that the number of patterns extracted in
this way may escalate quite rapidly, a circumstance that seems
to preclude precisely those massive analyses which have
become conceivable with the increasing availability of whole
genomes. Large-scale statistical tables may not only impose
unbearable computational burden. They are also impractical to
visualize and use—a circumstance that may defy the purpose
of building them in the first place. A little reflection estab-
lishes how exponential build-up may take place. Assume that
on the binary alphabet both aabaab and abbabb are asserted
as reflections of candidate interesting motifs. We can give a
concise description of this motif by writing a.ba.b, with ‘.’
denoting the dot, and then look for further occurrences of this
motif. By this, however, we have immediately annexed also
the spurious patterns aababb and abbaab. A similar prob-
lem presents itself in the approaches that resort to profiles or
weighed matrices mentioned earlier. In all these cases, the
risk is having to tell Horatio that there are more things in his
philosophy than are dreamed of in heaven and earth.2 Despite
setting aside computational aspects, tables that are too large
at the outset risk to saturate the visual bandwidth of the user.
In this spirit, approaches that limit from the start the num-
ber of patterns to be considered may ripe a more significant
throughput, even in the comparison with exhaustive methods.

We regard the motif discovery process as distributed on two
stages, where the first stage unearths motifs endowed with a
certain set of properties and the second filters out the inter-
esting ones. Since the redundancy builds up in the first stage,

2‘There are more things in heaven and earth, Horatio, Than art dreamt of in
your philosophy’—W. Shakespeare, Hamlet, I, v [76].

it is there that we have to look for possible ways of redu-
cing the unnecessary throughput. Since over-representation is
measured by a score, one would have to find ways to neg-
lect candidate motifs that cannot possibly make it to the top
list, and ideally spot such motifs before they are even com-
puted. Counterintuitive as it might look, we show that such
a possibility may be offered by certain attributes of ‘satura-
tion’ that combine in a unique way the syntactic structure and
the list of occurrences or frequency for a motif. With solid
words, for example, we know that in the worst case the num-
ber of distinct substrings in a string can be quadratic in the
length of that string. Nevertheless, if we partition the sub-
strings into buckets, by putting in the same bucket strings that
have exactly the same set of occurrences, we only need a num-
ber of buckets linear in the textstring (Blumer et al., 1985).
Similar linear bounds were established for special classes of
rigid motifs containing ‘dots’ (Apostolico and Parida, 2004).
When combined with intervals of score monotonicity, proper-
ties of this kind support the global detection of unusual words
of any length in overall linear space (Apostolico et al., 2002).
Some of these conservative scoring techniques were extended
recently to rigid motifs with a prescribed maximum number
of mismatches or dot (Apostolico and Pizzi, 2004).

1.2 Main results
In this paper, we introduce and study a characterization of
extensible motifs in the definition of which structural or
syntactic properties and occurrence statistics are solidly inter-
twined. We show that a prudent combination of saturation
conditions (expressed in terms of minimum number of dots
compatible with a given list of of occurrences) and monoton-
icity of scores afford us significant parsimony in the generation
and testing of candidate over-represented motifs. More spe-
cifically, we isolate as candidate surprising motifs only the
members of an a priori well identified set of ‘maximally sat-
urated’ patterns. By this set being identifiable a priori, we
mean that the motifs in the set can be known before any score
is computed. By neglecting the motifs other than those in our
set, we would not be overlooking any surprising motif. In fact,
we maintain that any such motif: (1) is embedded in one of the
saturated ones and (2) does not achieve a larger score than the
latter (hence, computing its score and publishing it explicitly
would take more time and space but not add information).
The results of this paper apply to extensible patterns a philo-
sophy previously applied to rigid motifs described (1) by solid
words (Apostolico et al., 2002) and (2) by words of some spe-
cified fixed length affected by a specified maximum number of
errors (Apostolico and Pizzi, 2004). The transition from rigid
to extensible motifs requires the orchestration of substantially
novel concepts and tools, resulting in an algorithm for the
extraction and weighing of extensible motifs, and a suite of
software programs implementing the whole. The merits of the
method are tested on families of protein sequences, as doc-
umented in the last part of the paper. In all cases tested, the

i10

“bti1051” — 2005/6/10 — page 11 — #3

Extraction of extensible motifs

motif reported in PROSITE as the most important in terms
of functional/structural relevance emerges either at the top or
among the top ten or so of the (short) output list. Experi-
ments related to the sensitivity and selectivity of the method
are also reported.

1.3 Basic definitions and concepts
To proceed with a formal definition of the concepts highlighted
above, let s be a sequence of sets of characters from an alpha-
bet � ∪ {.}, where ‘.’ �∈ � denotes a dot and the rest are solid
characters. We use σ to denote a singleton character or a sub-
set of �. For character (sets) e1 and e2, we write e1 � e2 if
and only if e1 is a dot or e1 ⊆ e2. Allowing for spacers in a
string is what makes it extensible. Such spacers are indicated
by annotating the dot characters. Specifically, an annotated ‘.’
character is written as .α where α is a set of positive integers
{α1, α2, . . . , αk} or an interval α = [αl , αu], representing all
integers between αl and αu including αl and αu. Whenever
defined, d will denote the maximum number of consecutive
dots allowed in a string. In such cases, for clarity of nota-
tion, we use the the extensible wild card denoted by the dash
symbol ‘−’ instead of the annotated dot character, .[1,d] in the
string. Note that ‘−’ �∈ �. Thus, a string of the form a.[1,d]b
will be simply written as a − b. A motif m is extensible if it
contains at least one annotated dot, otherwise m is rigid. Given
an extensible string m, a rigid string m′ is a realization of m if
each annotated dot .α is replaced by l ∈ α dots. The collection
of all such rigid realizations of m is denoted by R(m). A rigid
string m occurs at position l on s if m[j] � s[l + j − 1] holds
for 1 ≤ j ≤ |m|. A extensible string m occurs at position l in
s if there exists a realization m′ of m that occurs at l. Note
than an extensible string m could possibly occur a multiple
number of times at a location on a sequence s. All through
the discussion, we are interested mostly in the (unique) first
left-most possible occurrence at each location.

For a sequence s and positive integer k, k ≤ |s|, a string
(extensible or rigid) m is a motif of s with |m| > 1 and location
list Lm = (l1, l2, . . . , lp), if both m[1] and m[|m|] are solid
and Lm is the list of at all and only the occurrences of m

in s. Given a motif m let m[j1], m[j2], . . . , m[jl] be the l

solid elements in the motif m. Then the submotifs of m are
given as follows: for every ji , jt , the submotif m[ji · · · jt] is
obtained by dropping all the elements before (to the left of)
ji and all elements after (to the right of) jt in m. We also
say that m is a condensation for any of its submotifs. We
are interested in motifs for which any condensation would
disrupt the list of occurrences. Formally, let m1, m2, . . ., mk

be the motifs in a string s. A motif mi is maximal in length
if there exists no ml , l � = i with |Lmi

| = |Lml
| and mi is a

submotif of ml . A motif mi is maximal in composition if no
dot character of mi can be replaced by a solid character that
appears in all the locations in Lm. A motif mi is maximal in
extension if no annotated dot character of mi can be replaced
by a fixed length substring (without annotated dot characters)

that appears in all the locations in Lm. A maximal motif is
maximal in composition, in extension and in length.

In the Section 2, we derive expressions for the probabil-
ities and expected number of occurrence of a motif under
simple probabilistic models. We further derive monotonicity
properties that hold for related z-scores under the fairly accept-
able assumption that the probability of a motif occurrence is
<0.5. In Section 3 we discuss our algorithm, its implement-
ation and usage. Section 4 contains results from preliminary
experiments on protein families.

2 EXPECTATIONS AND SCORES
We begin by deriving some simple expressions for the the
probability pm of an extensible motif m under stationary, iid
assumptions. Let m be an extensible motif generated by a
stationary, iid source which emits σ ∈ � with probability pσ .
Consider the set R(m) of all possible realizations of m. Each
realization is a string over � ∪ {.}. For a specific realization
m, its probability pm is given by

pm =
∏

σ ∈ �

(pσ)jσ , (1)

where jσ is the number of times σ appears in m̄. Thus, the dot
has an implicit probability of 1.

An extensible motif is degenerate if it can possibly have
multiple occurrences at a site i on the input s.

Lemma 1. Let m be an extensible non-degenerate motif
generated by a stationary, iid source which emits(σ ∈ �) with
a probability pσ . Let jσ be the number of timesσ appears
in m and let e be the number of annotated dots inm with
annotationsα1, α2, . . . , αe. Then

pm =
∏

σ ∈ �

(pσ)jσ

e∏
i = 1

|αi |. (2)

Proof. Since the motif is non-degenerate, by the definition
of realization of a motif,

pm =
∑

m ∈ R(m)

(pm).

Hence we need to compute pm where m is a rigid motif.
Assume m is a rigid motif with no dot characters. By the
iid assumption, pm = ∏

σ ∈ �(pσ)jσ . Next, consider m to be a
rigid motif with possibly some dot characters. Again, clearly,
pm = ∏

σ ∈ �(pσ)jσ . In other words, only the solid characters
contribute non-trivially to the computation of pm. Hence, if
m is not rigid,

pm = |R(m)|
∏

σ ∈ �

(pσ)jσ .

But |R(m)| = ∏e
i = 1 |αi |, hence the result.

i11

“bti1051” — 2005/6/10 — page 12 — #4

A.Apostolico et al.

Corollary 1. If m is a non-degenerate extensible motif
where eachm[i] is a set of (homologous) characters, then

pm =
∏

m[i]� = ‘.′,‘-′


 ∑

σ ∈ m[i]
pσ


 e∏

i = 1

|αi |. (3)

Let Ms denote a set of strings that has only the solid
characters of at least s occurrences of m. For example, con-
sider the motif a–b with realizations a.b, a..b and a...b.
Then M1 = {a.b, a..b, a...b} since m occurs once on each
m ∈ M1; M2 = {a.bb, a..bb, a.b.b} since m occurs twice on
each m ∈ M2; M3 = {a.bbb} since m occurs three times on
m ∈ M3.

Corollary 2. Let m be a degenerate (possibly with
multiple occurrences at a site) extensible motif, and let
pmk = ∑

m′ ∈ Mk+1 pm′ ; then

pm =
r−1∑
k = 0

(−1)k(pmk+1). (4)

This follows directly from the inclusion–exclusion
principle.

Notice that for a degenerate motif, Equation (2) is the
0-th order approximation of Equation (4). The first order
approximation is pm ≈ pm1 − pm2 and the second order
approximation is pm ≈ pm1 − pm2 + pm3 and so on. Using
Bonferroni’s inequalities, a k-th order approximation of pm is
an over-estimate of pm, if k is odd.

Next, we obtain the form of pm for a non-degenerate motif
when input m is assumed to be generated by a Markov chain.
For the derivation below, we assume that the Markov chain
has order 1. For further discussion, we introduce the following
definition.

Definition 1. (cell 〈σ1, σ2, �〉, C(m)). A substringm̂, on
m is a cell , that begins and ends in solid characters with only
non-solid intervening characters:σ1 at the start andσ2 at the
end position, and� is the number of intervening unannotated
dot characters. If the intervening character is the extensible
character, then� takes a value of−1. For convenience, the cell
is represented by the triplet〈σ1, σ2, �〉. C(m) is the collection
of all such cells ofm.

For example, C(ab..c.d-g) = {〈a, b, 0〉, 〈b, c, 2〉, 〈c, d, 1〉,
〈d , g, −1〉}.

Let p
(k)
σ1,σ2 denote the probability of moving from σ1 to σ2 in

k steps. Let s be a stationary, irreducible, aperiodic Markov
chain of order 1 with state space � (|�| < ∞). Furthermore,
πσ is the equilibrium probability of σ ∈ � and the (|�|×|�|)
transition probability matrix P [i, j] is defined as p

(1)
σi ,σj

. For
a rigid motif m, for each cell 〈σ1, σ2, �〉 ∈ C(m) is such that
� ≥ 0. It is easy to see that when � ≥ 0, the cell represents
the (� + 1) step-transition probability given by P �+1, i.e.

pσ1(.)�σ2 = P �[σ1, σ2]. Thus, for a rigid motif m,

pm = πm[1]
∏

〈σ1,σ2,�〉 ∈ C(m)

P �[σ1, σ2].

We are omitting further details, and from now on, let u and v

be two motifs such that v is a condensation of u, and consider
an arbitrary sequence of consecutive unit expansions—each
consisting of inserting a character or character set at some
position, or replacing a dot character with a solid character or
character set—that transforms u into v. A score z is monotonic
for u and v if the value of z is always either increasing or
decreasing over any such expansion. The key observation here
is that, under most probabilistic settings, the probability of a
condensation v of u obeys pv ≤ pu. This is almost immediate
under iid distribution, as shown by the following theorem.

Theorem 1. Letv andu be possible degenerate extensible
motifs under the iid model and letv be a condensation ofu.
Then, there is an integer̂p ≤ 1 such thatpv = pup̂.

Proof. It is enough to consider the case of a unit condens-
ation, i.e. where v has one more solid character than u. The
claim holds trivially when the extra character is introduced
as a prefix, infix, or suffix of u. In fact, in any such case
the probability of the extra character multiplies each term of
Expression 4, whence the whole probability as well. Consider
next the case where the solid character in v substitutes a dot
of u. We begin by describing an alternate way to compute
pu. With � denoting the length of a longest string in R(u),
compute the set of all strings over �� and store them con-
secutively row-wise in a table. Compute for each row, the
probability of the string in that row, which is the product of
the probabilities of the individual characters (the sum of all
row probabilities is 1). Consider now the realizations in R(u)

in succession. Check each realization against every row of
the table; wherever the two match, mark the row if it had not
been already marked. Let R be the set of rows that are marked
at the outset. Clearly, adding up the probabilities of the rows
in R yields pu. Consider now the set of rows that would be
similarly involved in the computation of pv . This must be a
subset of R, whence pv ≤ pu.

With Markov processes, the intuition at the basis is that if we
split the transition probability into two consecutive segments
we have: P �[σ1, σ2] = ∑

σk ∈ � P �1 [σ1, σk] × P �2 [σk , σ2],
where � = �1 + �2. Since all P �[σi , σj] ≥ 0, any specific
character (or alphabet subset) acting as a bottleneck yields
P �[σ1, σ2] ≤ P �1 [σ1, σk]×P �2 [σk , σ2]. The following general
property is derived in analogy with a similar one in Apostolico
et al. (2002).

Theorem 2. If f (u) = f (v) > 0, N(v) < N(u) and
E(v)/N(wv) ≤ E(u)/N(u), then

f (v) − E(v)

N(v)
>

f (u) − E(u)

N(u)
.

i12

“bti1051” — 2005/6/10 — page 13 — #5

Extraction of extensible motifs

Proof. Multiplying both terms by N(v)/E(v) and
using the assumption f (v) = f (u) ≥ 0, after rearrangement
we get

f (u)

E(v)

(
1 − N(v)

N(u)

)
> 1 − E(u)N(v)

E(v)N(u)
.

Since 0 < N(v)/N(u) < 1, the left-hand side is always posit-
ive. The right-hand size is always negative or zero.

When N(u) is the square root of the variance, the z-score
takes up the form

z(u) = f (u) − E(u)√
Var(u)

.

In the Bernoulli model, for instance, this variance results in√
npu(1 − pu). In our case, we let pm be the probability of the

motif m occurring at any location i on the input string s with
n = |s| and let km be the observed number of times it occurs
on s. When it can be assumed that the occurrence of a motif
m at a site is an iid process (Waterman 1995, Chapter 12), we
have for large n and km � n,

km − npm√
npm(1 − pm)

→ N(0, 1). (5)

Theorem 3. Letuandv be motifs generated with respective
probabilitiespu andpv = pup̂ according to an iid process. If
f (u) = f (v) andpu < 0.5 then

f (v) − E(v)√
E(v)(1 − pv)

>
f (u) − E(u)√
E(u)(1 − pu)

.

Proof. We show that the functions N(u) =√
E(u)(1 − pu) and E(u)/N(u) satisfy the conditions of

Theorem 2. First, we prove that E(v) < E(u). Indeed, since
|v| − |u|/(n − |u| + 1) > 0,

E(v)

E(u)
= (n − |v| + 1)pv

(n − |u| + 1)pu

=
(

1 − |v| − |u|
n − |u| + 1

)
p̂ < p̂ < 1.

Next, we study the ratio

(
N(v)

N(u)

)2

=
(

1 − |v| − |u|
n − |u| + 1

)
pv(1 − pv)

pu(1 − pu)
<

pv(1 − pv)

pu(1 − pu)
.

The concave product pu(1 − pu) reaches its maximum for
pu = 0.5. Since we assume pu < 0.5, the rightmost term is
smaller than one. The monotonicity of N(u) is satisfied.

Finally, we prove that E(u)/N(u) is also monotonic, i.e.
E(v)/N(v) ≤ E(u)/N(u), which is equivalent to

E(v)

E(u)

1 − pu

1 − pv

≤ 1,

but E(v)/E(u) < 1 by hypothesis and (1 − pu)/(1 − pv) < 1
since pu > pv .

In conclusion, we can restrict our z-score computation to
classes of maximal motifs, i.e. compute only the z-score for
the maximally saturated motif among those in each class of
motifs sharing the same list of occurrences.

3 ALGORITHMIC IMPLEMENTATION
The algorithm implementing the above criteria works by iter-
ated pairwise combination of segments of maximal extensible
motifs, followed by pruning of those pairings that are not
found to be viable. The input is a string s of size n and two
positive integers, K and D. The extensibility parameter D is
interpreted in the sense that up to D (or 1 to D) a number
of dot characters between two consecutive solid characters
are allowed. The output is all-maximal extensible (with D

spacers) patterns that occur at least K times in s. Incidentally,
the algorithm can be adapted to extract rigid motifs as a spe-
cial case. It suffices to interpret D as the maximum number of
dot characters between two consecutive solid characters for
this adaptation.

The algorithm works by converting the input into a sequence
of possibly overlapping cells (see Definition 1). A maximal
extensible pattern is a sequence of cells.

3.1 Initialization phase
The cell is the smallest extensible component of a maximal
pattern and the string can be viewed as a sequence of over-
lapping cells. If no dot characters are allowed in the motifs,
the cells are non-overlapping. The initialization phase has the
following steps.

Step 1:Construct patterns that have exactly two solid charac-
ters separated by no more than D spaces or ‘.’ characters. This
is done by scanning the string s from left to right. Furthermore,
for each location we store the start and end positions of the
pattern. For example, if s = abzdabyxd and K = 2, D = 2,
then all the patterns generated at this step are: ab, a.z, a..d,
bz, b.d, b..a, zd, z.a, z..b, da, d.b, d..y, a.y, a..x, by,
b.x, b..d, yx, y.d, xd, each with its occurrence list. Thus,
Lab = {(1, 2), (5, 6)}, La.z = {(1, 3)} and so on.

Step 2: The extensible cells are constructed by combin-
ing all the cells with at least one dot character and the same
start and end solid characters. The location list is updated to
reflect the start and end positions of each occurrence. Con-
tinuing with the previous example, b–d is generated at this
step with Lb−d = {(2, 4), (6, 9)}. All cells m with |Lm| < K

are discarded. In the example, the only surviving cells are ab,
b–d with Lab = {(1, 2), (5, 6)} and Lb−d = {(2, 4), (6, 9)}.
3.2 Iteration phase
Let B be the collection of cells. If m = Extract(B), then m ∈ B

and there does not exist m′ ∈ B such that m′ � m holds:
m1 � m2 if one of the following holds. (1) m1 has only solid
characters and m2 has at least one non-solid character. (2) m2

has the ‘−’ character and m1 does not. (3) m1 and m2 have
d1, d2 > 0 dot characters and d1 < d2.

i13

“bti1051” — 2005/6/10 — page 14 — #6

A.Apostolico et al.

Furthermore, m1 is ∼-compatible with m2 if the last
solid character of m1 is the same as the first solid char-
acter of m2. Moreover, if m1 is ∼-compatible with m2,
m = m1 ∼ m2 is the concatenation of m1 and m2

with an overlap at the common end and start character
and L′

m = {((x, y), z)|((x, l), z) ∈ L′
m1

, ((l, y), z) ∈ L′
m2

}. For
example, if m1 = ab and m2 = b.d then m1 is ∼-compatible
with m2 and m1 ∼ m2 = ab.d. However, m2 is not ∼-
compatible with m1.

The procedure is best described by the pseudocode shown
here. NodeInconsistent(m) is a routine that checks if the
new motif m is non-maximal with respect to the earlier non-
ancestral nodes by checking the location lists. Steps G:18–19
detect the suffix motifs of already detected maximal motifs.
Result is the collection of all the maximal extensible patterns.

Main()
{

Result ← {};
B ← {mi |mi is a cell};
For each m = Extract(B)

Iterate(m, B, Result);
}
Iterate(m, B, Result)
{
G:1 m′ ← m;
G:2 For each b = Extract(B) with
G:3 ((b ∼–compatible m′) OR (m′ ∼–compatible b))
G:4 If (m′ ∼–compatible b)
G:5 mt ← m′ ∼ b;
G:6 If NodeInconsistent(mi) exit;
G:7 If (|Lm′ | = |Lb|) B ← B − {b};
G:8 If (|Lm′ | ≥ K)
G:9 m′ ← mt ;
G:10 Iterate(m′, B, Result);
G:11 If (b ∼–compatible m′)
G:12 mt ← b ∼ m′;
G:13 If NodeInconsistent(mi) exit;
G:14 If (|Lm′ | = |Lb|) B ← B − {b};
G:15 If (|Lm′ | ≥ K)
G:16 m′ ← mt ;
G:17 Iterate(m′, B, Result);
G:18 For each r ∈ Result with Lr = Lm′

G:19 If (m′ is not maximal w.r.t. r) return;
G:20 Result ← Result ∪ {m′};
}

The correctness follows from the observation that the
above procedure essentially constructs the inexact suffix tree
of Chattaraj and Parida (2005) implicitly, in a different order.
A tight time complexity is more difficult to come by, however,
if we consider M to be the number of extensible maximal
motifs and S to be the size of the output, i.e. the sum of the
sizes of the motifs and the sizes of the corresponding loca-
tion lists, the time taken by the algorithm is O(SM log M).

In experiments of the kind described later in the paper, at
3-GHz clock, time ranged typically from few minutes to half
an hour.

3.3 Varun implementation and usage
In this section we give some details of using Varun,3 an
implementation of the discovery process of the extensible
patterns with combinatorial and statistical pruning. This
software will be available for use with the suite of tools
at www.research.ibm.com/bioinformatics; all user-specific
details appear here.

Since the pattern space can vary dramatically for different
classes of inputs, a number of parameters have been intro-
duced to allow the user exploit his specific domain knowledge
maximally. One way of viewing this control is to prune the
pattern space appropriately and various parameters are spe-
cified to meet this objective. There are essentially two classes
of pruning parameters: (1) combinatorial pruning and (2) stat-
istical pruning. To avoid clutter, we describe only a few of the
critical pruning parameters here. Each parameter has a default
value and it is not mandatory to specify all of them.

3.3.1 Combinatorial pruning Some of the combinatorial
pruning parameters are

(1) Pruning by occurrences.
(a) -k<Num>: Num is the quorum or the minimum

number of times a pattern must occur in the input.

(b) -c: When this is specified the quorum k is in
terms of the number of sequences where the pattern
occurs at least once. For example, if this option is
set and furthermore, -k10 is specified, a valid pat-
tern must occur in at least 10 distinct sequences.
However if this option is not set, a valid pattern
must have at least 10 occurrences, not necessarily
in distinct sequences.

(2) Pruning by composition.
(a) Using homology groups.

(i) -b<File>: File lists the symbol equival-
ences that define the homology groups. The
default file is an empty file.

(ii) n<Num>: Num is the maximum number of
bracketed elements (equivalence classes) in a
pattern. For example, if ‘−n2’ is specified,
[IL]...[LV], L.[LV] − V are valid patterns
but not [LV][IL][LV]..L.

(b) -R: When this mode is specified, only rigid
patterns are discovered.

(c) Extensibility: The following two parameters are
used to prune the space of extensible patterns.

3A character from Indian mythology who is thousand eyed and sees all that
happens in the world.

i14

“bti1051” — 2005/6/10 — page 15 — #7

Extraction of extensible motifs

Table 1 shows an example of the size of the pattern
space for different parameter values.

(i) -D<Num>: Num is the maximum number
of consecutive dot characters (‘.’) in the
realization of an extensible pattern. Note
that a dot character and an extensible char-
acter are never consecutive in any valid
pattern. For example, if ‘−D3’ is specified,
then L...V , LV , L.L.V are valid patterns
but not L....L. Furthermore, an extensible
pattern of the form L − V implies that
there are 1–3 dot characters in the occur-
rences of this pattern between the bases
L and V .

(ii) -d<Num>: Num is the minimum number of
non-extensible characters (including the dot
character) between two consecutive extens-
ible characters (‘−’). For example, if ‘−d4’
is specified, then L..H −L..H −L is a valid
pattern but not L...H − L.H − L.

3.3.2 Statistical pruning In this parameter,

(1) -p<File>: File lists the symbol probabilities used
for the probabilistic analysis.

(2) -z<Val>: Val is the minimum absolute value of z-
score of the patterns.

3.3.3 Information display

(1) Displaying occurrence information.The different
modes of displaying the occurrence list of each valid
pattern are as follows. (a) The occurrence list is not
displayed (option -L0). (b) Only the start position of
each occurrence is displayed (option -L1). (c) The
start and end positions of each occurrence is displayed
as x1 − x2 where x1 is the starting position and x2 the
end position (option -L4).

(2) Displaying statistical information. The different
statistical information displayed for possible use are
(Section 2) (a) the probability of occurrence of a
pattern, (b) the observed number of occurrences and
(c) the z-score. Figure 1 shows an example.

4 RESULTS FROM PRELIMINARY
EXPERIMENTS

We tested Varun on six protein families by seeking the surpris-
ing motifs in each. Each family was picked at random from
the PROSITE database.

(1) High potential iron–sulfur proteins (HiPIP) (id
PS00596).This is a specific class of high redox poten-
tial 4Fe–4S ferredoxins that function in anaerobic
electron transport and occur in photosynthetic bacteria

Table 1. Number of patterns in the experiment in Figure 7 with z-score≥
100.0 at various values of parameters D and d with quorum k = 53

D

2 3 4 5

d

3 121 196 370 1145
4 121 194 355 1008
5 114 182 326 891
8 112 178 313 758

10 112 178 313 727

Pattern Probability Occ. Z-Score
[LIVP]-[LM]R.[GE][LIVP].GC 2.05647e-07 57 585.494
LR.[GE][LIVP].GC 2.53136e-07 63 582.758
L..[GE][LIVP].GC 4.77614e-06 70 148.626
R-[GE][LIVP].GC 6.33367e-06 66 121.48
L-[GE][LIVP].GC 1.43284e-05 83 101.21
G[LIVP][GE].GC 3.98344e-05 77 55.359
R-[LIVP].GC 4.68467e-05 65 42.6968
L-[LIVP].GC 0.00010598 112 48.3873

Fig. 1. A statistical summary of a small set of valid patterns
on the coagulation factors 5/8 type C domain, also used in
Figure 7.

Rank z-score Motif
1 1497,62 C-(6,7,8,9)[LIVM]...G[YW]C..[FYW]
2 978,872 P-(3,4,6,8,9)[LIVM]...G[YW]C..[FYW]
3 590,866 C-(6,7,8,9)[LIVM]...G[YW]C-(1,3,4,5,6,7)A
4 564,821 C-(6,7,8,9)[LIVM]...G[YW]C-(1,3,4,5,6,7)[A TD]
5 537,73 [LIVM]-(1,2,3,4,5,7,8,9)G[YW]C..[FYW]
6 385,2 [LIVM]-(1,2,3,4,5,7,8,9)G[FYW]C..[FYW]
7 161,173 [LIVM]...G[FYW]C-(2,4)[FYW]
8 156,184 [LIVM]-(1,2,3,4,5,6,7,8,9)G[YW]C
9 138,881 [LIVM]-(1,3,4,5,6)[LIVM]...G[FYW]C-(1,3,4,5,6,7)A

Fig. 2. The functionally relevant motif is shown in bold for
high potential iron–sulfur proteins (HiPIP) (id PS00596), Here 22
sequences of ∼2500 bases were analyzed at k = 22, D = 9, d = 4.

Rank z-score Motif
1 7,60E+07 RA.T[LV].C.P-(2,3)G.HP....AC[ATD].L....[ASG]
2 21416,8 A..[LV].C.P-(2,3)G.HP-(1,2,4)[ASG].[ATD]
3 8105,33 A-(1,4)T....P-(2,3)G.HP....[ATD]-(3)L....[ASG]
4 5841,85 [ATD].T....P-(1,2,3)G.HP-(1,2,4)A.[ATD]
5 4707,62 P.[ASG]-(2,3,4)P....AC[ATD].L....[ASG]
6 4409,21 A..[LV]...P-(2,3)G.HP-(1,2,4)A.[ATD]
7 3086,17 P-(1,2,3)[ASG]..P-(4)AC[ATD].L....[ASG]
8 3068,18 R..[ATD]....P-(2,3)G.HP-(1,2,4)[ASG].[ATD]
9 2615,98 [ASG][ATD]-(1,3,4)P....AC[ATD].L....[ASG]

10 2569,66 [ASG]-(1,2,3,4)P....AC[ATD].L....[ASG]
11 2145,6 G-(2,3)P....AC[ATD].L....[ASG]

Fig. 3. The functionally relevant motif is shown in bold for Strep-
tomyces subtilisin-type inhibitors signature (id PS00999). Here 20
sequences of ∼2500 bases were analyzed at k = 20, D = 4, d = 4.

i15

“bti1051” — 2005/6/10 — page 16 — #8

A.Apostolico et al.

Rank z-score Motif
1 295840 [LIM]-(1,2,3,4)[STA][FY]DPC[LIM][ASG]C[ASG].H
2 2,86E+05 [LIM]-(1,2,3,4)[ASG][FY]DPC[LIM][ASG]C[ASG].H
3 155736 R-(1,4)[FY]DPC[LIM][ASG]C[ASG].H
4 78829 [LIM]-(1,2,3,4)[STA].DPC[LIM][ASG]C[ASG].H
5 76101,9 [LIM]-(1,2,3,4)[ASG].DPC[LIM][ASG]C[ASG].H
6 34205,6 [STA]-(1,4)DPC[LIM][ASG]C[ASG].H
7 30325,1 [LIM]-(1,2,3,4)[STA][FY]D.C[LIM][ASG]C..H
8 29276 [LIM]-(1,2,3,4)[ASG][FY]D.C[LIM][ASG]C..H
9 20527,3 [ASG]-(1,4)DPC[LIM][ASG]C[ASG].H

10 17503,4 [LIM]-(1,2,3,4)[ASG]..PC[LIM][ASG]C[ASG].H

Fig. 4. The functionally relevant motifs are shown in bold for
Nickel-dependent hydrogenases (id PS00508). Here 22 sequences
of ∼23 000 bases were analyzed at k = 22, D = 4, d = 3.

and in Paracoccus denitrificans(Breiter et al., 1991).
Two of the cysteine residues of the motif shown in
Figure 2 are involved in binding to the iron–sulfur
cluster. This is the top ranking motif discovered by
Varun out of the possible 273 extensible motifs.

(2) Streptomyces subtilisin-type inhibitors (id PS00999).
Bacteria of the Streptomyces family produce a family
of proteinase inhibitors characterized by their strong
activity toward subtilisin. They are collectively known
as streptomyces subtilisin inhibitors (SSIs). Varun
discovers this functionally significant motif as the top
ranking one out of 470 extensible motifs (Fig. 3).

(3) Nickel-dependent hydrogenases (id PS00508).These
are enzymes that catalyze the reversible activation of
hydrogen and are further involved in the binding of
nickel. Again, this functionally significant motif is
detected among the top three by Varun out of 4150
extensible motifs (Fig. 4).

(4) G-protein coupled receptor family 3 (id PS00980).
Varun finds that the most important structural motif
in this family is among the top 30 of the motifs out of
3508 extensible motifs (Fig. 5).

(5) Chitin-binding type-1 domain (id PS00026).Varun
finds that the most important structural motif in this
family is one of the top two of the motifs out of 886
extensible motifs (Fig. 6).

(6) Coagulation factors 5/8 type C domain (FA58C) (id
PS01286).Varun finds that the most important struc-
tural and functional motif in this family is one of the
top two of the motifs out of 80290 extensible motifs
(Fig. 7).

To summarize, we find that in almost all cases, the motif
documented as the most important (as functionally/structurally
relevant motif) in PROSITE is in the top extensible motifs
returned by Varun as surprising. In the fourth set (Fig. 5) we
find the PROSITE motif at position 42, shows that in some
particular cases the patterns reported by Varun can be grouped
together; in fact, the top scoring motifs are very close to each
other in location and in composition. This reveals that a post

Rank z-score Motif
1 2,84E+09 Y...L...C..[FYW]A..[STAH]R..P..FNE[STAH]K.I.F[STAH]M

2 8,28E+07 V-(1,3,4)G...S..[STAH]....N...L....Q-(4)[STAH]....L.[DN]...[FYW]..F....P....Q..A...I

3 5,55E+07 L-(2,3)F...Q....[STAH][STAH]...L.[DN]...[FYW]..F.R..P.D..Q..A...I

4 4,27E+07 L-(2,3)F...Q.[STAH]..[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

5 4,23E+07 L....I...[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

6 3,99E+07 LF-(3)Q....[STAH][STAH]....S[DN]...[FYW]..F.R..P.D..Q..A...I

7 3,38E+07 LF-(3)Q....[STAH][STAH]...L.[DN]...[FYW]..F.R..P.D..Q..A...I

8 3,38E+07 LF...Q....[STAH]-(4)L.[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

9 3,29E+07 I-(1)Q.[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

10 3,29E+07 I.Q-(4)[STAH]....LS[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

11 3,29E+07 I.Q.[STAH]..[STAH]-(4)LS[DN]...[FYW]..F.R..P.D..Q..A...I

12 3,10E+07 L....Q-(1,4)[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

13 2,77E+07 L[FYW]-(3)Q.[STAH]..[STAH]....LS....[FYW]..F.R..P.D..Q..A...I

14 2,58E+07 L-(4)Q.[STAH]..[STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

15 2,30E+07 S.[STAH]S-(2,4)LS[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

16 2,15E+07 L-(1,3,4)C..[FYW]A..[STAH]R..P..F.E.K.I.F.M

17 1,40E+07 F-(1)I.Q...[STAH][STAH]-(4)L[STAH]....[FYW]..F.R..P.D..Q..A...I

18 1,37E+07 L-(2,4)I...[STAH].[STAH].[STAH]-(3)LS....[FYW]..F.R..P.D..Q..A...I

19 1,02E+07 L..I-(1)Q....[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

20 8,65E+06 I-(1)Q....[STAH][STAH]...L.[DN]...[FYW]..F.R..P.D..Q..A...I

21 8,19E+06 S[STAH]-(1,2,3,4)LS[DN]...[FYW]..F.R..P.D..Q[STAH].A...I

22 7,98E+06 Q-(3)[STAH][STAH]....LS[DN]...[FYW]..F.R..P.D..Q..A...I

23 6,82E+06 F-(3)Q....[STAH][STAH]...L[STAH]....[FYW]..F.R..P.D..Q..A...I

24 5,66E+06 A[STAH][STAH]-(2,3)LS[DN]...[FYW]..F.R..P.D..Q..A...I

25 5,57E+06 F.I-(3)[STAH]..[STAH]....L[STAH]....[FYW]..F.R..P.D..Q..A...I

26 5,18E+06 L.L-(4)Q....[STAH]....L-(1)[DN]...[FYW]..F.R..P.D..Q..A...I

27 3,61E+06 L.L-(2)I...[STAH]...[STAH]....[STAH]....[FYW]..F.R..P.D..Q..A...I

28 3,48E+06 [STAH].[STAH]-(1,2,3)LS[DN]...[FYW]..F.R..P.D..Q..A...I

29 3,17E+06 [STAH]...[STAH]...LS[DN]...[FYW]..F.R..P.D..Q..A...I

30 2,47E+06 L....Q-(4)[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

31 2,43E+06 V-(1,3)N.L....I-(3)[STAH]...[STAH]....[STAH]....[FYW]..F....P.D..Q..A...I

32 2,22E+06 [STAH][STAH][STAH]-(1,2,3)LS....[FYW]..F.R..P.D..Q..A...I

33 2,06E+06 [STAH].[STAH][STAH]....LS....[FYW]..F.R..P.D..Q..A...I

34 2,03E+06 Y...L...C...A...R..P..F.E.K.I-(1,4)[FYW][STAH]

35 1,99E+06 I.Q...[STAH]-(1)[STAH]...L.[DN]...[FYW]..F....P.D..Q..A...I

36 1,99E+06 I.Q-(1)[STAH]...[STAH]...L.[DN]...[FYW]..F....P.D..Q..A...I

38 1,97E+06 F.I...[STAH]-(3)[STAH]...L.[DN]...[FYW]..F....P.D..Q..A...I

40 1,97E+06 F.I-(3)[STAH]..[STAH]....L.[DN]...[FYW]..F....P.D..Q..A...I

41 1,91E+06 [STAH]..[STAH].K-(1,4)P..FNE[STAH]K.I.F[STAH]M

42 1,72E+06 CC[FYW].C..C....[FYW]-(2,4)[DN]..[STAH]C..C
43 1,57E+06 [STAH]-(1,3,4)[FYW]A..[STAH]R..P..F.E.K.I.F.M

44 1,49E+06 A-(1,3)[STAH]...L[STAH][DN]...[FYW]..F.R..P.D..Q..A...I

45 1,36E+06 Q...[STAH].[STAH]-(3)L[STAH]....[FYW]..F.R..P.D..Q..A...I

46 1,32E+06 I-(3)[STAH]..[STAH][STAH]....S....[FYW]..F.R..P.D..Q..A...I

47 1,31E+06 [STAH][STAH]-(1,2,3,4)L.[DN]...[FYW]..F.R..P.D..Q..A...I

48 1,24E+06 [STAH]..[STAH][STAH]-(1,3)LS....[FYW]..F.R..P.D..Q..A...I

49 1,19E+06 [FYW]-(1,3,4)[STAH]...P..FNE[STAH]K.I.F[STAH]M

50 1,12E+06 I...[STAH]-(3)[STAH]...L[STAH]....[FYW]..F.R..P.D..Q..A...I

Fig. 5. The functionally relevant motif is shown in bold for G-
protein coupled receptors family 3 (id PS00980). This run involved
25 sequences of ∼25 000 bases each at k = 25, D = 4, d = 8.

Rank z-score Motif
1 5,42E+06 C-(4,5)CCS..G[FYW]CG....[FYW]C
2 1,73E+06 C-(4,5)CCS..G[FYW]CG.....C
3 1,70E+06 C-(4,5)CCS..G.CG....[FYW]C
4 1,56E+06 CCS..G[FYW]CG....[FYW]C
5 544162 C-(4,5)CCS..G.CG.....C
6 4,95E+05 CCS..G[FYW]CG.....C
7 488261 CCS..G.CG....[FYW]C
8 155706 CCS..G.CG.....C
9 104666 C-(4,5)C.S..[GASL][FYW]CG.....C

10 84133,4 C.....C-(3,4)[GASL][FYW]CG....[FYW]C
11 56078 C.....C-(3,4)G.CG....[FYW]C

Fig. 6. The functionally relevant motif is shown in bold for Chitin
recognition (id PS00026). Here 53 sequences of ∼13 823 bases were
analyzed at k = 53, D = 5, d = 10.

processing step that clusters together the top patterns can only
improve the goodness of the results. In all cases, the difference
in the z-score between the top few and the rest is dramatic as
can be seen in Figures 2–7 (Table 1). The differing values of
the z-scores of each family is attributed to the different sizes

i16

“bti1051” — 2005/6/10 — page 17 — #9

Extraction of extensible motifs

Rank z-score Motif
1 969,563 P-(4,5,8,9,10)[LM]R.[GE][LIVP].GC
2 694,1 P-(4,5,8,9,10)[LM]R.[GE][LIVP].[GE]C
3 370,594 [LIVP]-(1,3,4,5,6,7,8,9,10)[LM]R.[GE]..[GE]C
4 361,052 P-(4,5,8,9,10)[LM]R.[GE]..[GE]C
5 261,519 [LIVP]-(1,3,4,5,6,7,8,9,10)[LM]R.[GE][LIVP]..C
6 261,519 [LIVP]-(1,3,4,5,6,7,8,9,10)[LM]R..[LIVP].[GE]C
7 254,971 P-(4,5,8,9,10)[LM]R.[GE][LIVP]..C
8 254,971 P-(4,5,8,9,10)[LM]R..[LIVP].[GE]C
9 249,763 [LIVP]........[LIVP]-(1,2,4,5,6,7,8,9,10)R.[GE]..GC

Fig. 7. The functionally relevant motif is shown in bold for Coagu-
lation factors 5/8 type C domain (id PS01286). Here 40 sequences
of ∼80 290 bases were analyzed. Notice that in this case, the motifs
have a fairly large gap size of 10 bases at k = 40, D = 10, d = 10.

of the the families (the number of members and the length of
each member).

Next, we test the sensitivity and selectivity of Varun using
the families as reported in PROSITE. Since most of the fam-
ily sizes are small, we do these experiments along the lines
of Wang et al. (1999, p. 46). The following six sets were selec-
ted randomly from each family: five sequences from each of
the families, high potential iron–sulfur proteins, streptomy-
ces subtilisin-type inhibitors, nickel-dependent hydrogenases,
G-protein coupled receptors family 3 and coagulation factors
5/8 type C domain, and eight sequences from the family of
chitin-binding type-1 domain.

First, each family was contaminated with one of the sets that
was drawn from a different family (e.g. the five sequences of
G-protein was mixed with the family of the hydrogenases).
Next, we contaminated each family with two sets from a dif-
ferent family and then subsequently three sets. In each of the
experiments we found that the top ranked motifs were exactly
as reported in Figures 2–7.

5 CONCLUSION AND FUTURE
DIRECTIONS

The extensibility of a motif not only leads to a succinct
description but also helps capture function and/or structure
in a single pattern, which would be not possible through a
rigid description (see case studies in Section 4). At the same
time, with extensible motifs the number of candidates to be
considered increases dramatically. Our characterization of a
pattern rigidly conjugates structure and set of occurrences.
This results in a definition of motif that lends itself to a natural
notion of maximality, thereby embodying statistics and struc-
ture in one measure of surprise. This is unlike most previous
approaches, that consider structure and statistics as separate
features of a pattern. It leads here to a powerful syntactic
mechanism for eliminating unimportant motifs before their
score is computed. We show in this paper that for the class
of over-represented motifs, the non-maximal motifs are not
more surprising than the maximal motifs. The usefulness of

the statistical measures resulting from this combination of
ideas is demonstrated on a small set of families of proteins.
The results, though preliminary, look very promising. More
advanced probabilistic frameworks are worthy of investiga-
tion. We are also currently working on the task of unsupervised
discovery over the entire database to gauge suitable specificity
and sensitivity parameters.

ACKNOWLEDGEMENTS
Work by A.A. was supported in part by the Italian Min-
istry of University and Research under the National Projects
FIRB RBNE01KNFP, PRIN ‘Combinatorial and Algorithmic
Methods for Pattern Discovery in Biosequences’ and by the
Research Program of the University of Padova. Work was
done by M.C. during his internship at IBM Thomas J. Watson
Research Center. We are very grateful to Abhijit Chattaraj for
his strong contributions to the code in the initial phase of the
development.

REFERENCES
Apostolico,A., Bock,M.E. and Lonardi,S. (2002) Monotony of sur-

prise and large scale quest for unusual words. J. Comput. Biol.,
10(3–4), 283–311.

Apostolico,A. and Parida,L. (2004) Incremental paradigms for motif
discovery. J. Comput. Biol., 11(1), 15–25.

Apostolico,A. and Pizzi,C. (2004) Monotone scoring of patterns with
mismatches. In Proceedings of the 4th Workshop on Algorithms
in Bioinformatics, 17–21 September, Bergen, Norway. Lec-
ture Notes in Computer Science, Vol. 3240, Springer, Berlin,
pp. 87–98.

Blumer,A., Blumer,J., Ehrenfeucht,A., Haussler,D., Chen,M.T. and
Seiferas,J. (1985) The smallest automaton recognizing the
subwords of a text. Theoret. Comput. Sci., 40, 31–55.

Breiter,D.R., Meyer,T.E., Rayment,I. and Holden,H.M. (1991) The
molecular structure of the high potential iron–sulfur protein isol-
ated from Ectothiorhodospirq halophiladetermined at 2.5-Å
resolution. J. Bio. Chem., 266, 18660–18667.

Chattaraj,A. and Parida,L. (2005) An inexact suffix tree based
algorithm for extensible pattern discovery. Theoret. Comput. Sci.,
335: 3–14.

Hertz,G.Z. and Stormo,G.D. (1999) Identifying DNA and pro-
tein patterns with statistically significant alignments of multiple
sequences. Bioinformatics, 15, 563–577.

Keich,U. and Pevzner,P.A. (2002) Finding motifs in the twilight
zone. In Proceedings of the 6th Annual International Conference
on Computational Molecular Biology, April 2002, Washington,
DC, pp. 195–204.

Lawrence,C.E., Altschul,S.F., Boguski,M.S., Liu,J.S., Neuwald,A.F.
and Wootton,J.C. (1993) Detecting subtle sequence signals: a
Gibbs sampling strategy for multiple alignment. Science, 262,
208–214.

Leung,M.Y., Marsh,G.M. and Speed,T.P. (1996) Over and under-
representation of short DNA words in herpesvirus genomes. J.
Comput. Biol., 3, 345–360.

i17

“bti1051” — 2005/6/10 — page 18 — #10

A.Apostolico et al.

Pevzner,P.A. and Sze,S.-H. (2000) Combinatorial approaches to find-
ing subtle signals in DNA sequences. In Proceedings of the Eighth
International Conference on Intelligent Systems for Molecular
Biology, AAAI Press, pp. 269–278.

Taguchi,S., Kojima,S., Terabe,M., Miura,K.I. and Momose,H.
(1994) Comparative studies on the primary structures and inhibit-
ory properties of subtilisin–trypsin inhibitors from streptomyces.
Eur. J. Biochem., 220, 911–918.

Volbeda,A., Charon,M.H., Piras,C., Hatchikian,E.C., Frey,M.
and Fontecilla-Camps,J.C. (1995) Crystal structure of the
nickel–iron hydrogenase from Desulfovibrio giges. Nature, 373,
580–587.

Wang,J.T.L., Shapiro,B.A. and Shasha,D. (1999) Pattern Discovery
in Biomolecular Data. Oxford University Press, Oxford.

Waterman,M.S. (1995) An Introduction to Computational Biology:
Maps, Sequences and Genomes. Chapman Hall, New York.

i18

